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The ubiquitous distribution of many contaminants and the nonlethal, multigenerational effects of such contaminants on reproductive, endocrine, and
immune systems have led to concerns that wildlife worldwide are affected. Although the causal agents and effects are known for some species,
the underlying physiological mechanisms associated with contaminant-induced reproductive modifications are still poorly understood and require
extensive research. We describe a study examining the steroidogenic activity of gonads removed from juvenile alligators (Alligator mississippiensis)
obtained from contaminated or control lakes in central Florida. Synthesis of estradiol-1 7p (E2) was significantly different when ovaries frorn the
contaminated and control lakes were compared in vitro. Additionally, testes from males obtained from the contaminated lake, Lake Apopka, synthe-
sized significantly higher concentrations of E2 when compared to testes obtained from control males. In contrast, testosterone (T) synthesis from all
testes examined in this study displayed a normal pattern and produced concentrations greater than that observed from ovaries obtained from either
lake. Interestingly, the pattern of gonadal steroidogenesis differs from previously reported plasma concentrations of these hormones obtained from
the same individuals. We suggest that the differences between the in vivo and in vitro patterns are due to modifications in the hepatic degradation
of plasma sex steroid hormones. - Environ Health Perspect 103(Suppl 4):31-36 (1995)
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Introduction
Many xenobiotic compounds introduced
into the environment by human activity
have been shown to modify normal biolog-
ical function in various wildlife species.
The ubiquitous distribution of many con-
taminants and the nonlethal, multigenera-
tional effects of such contaminants on
reproductive, endocrine, and immune
systems have led to concerns that wildlife
worldwide may be affected (1,2).
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The reproductive disorders reported to
date in wildlife exposed to xenobiotic
compounds involve such factors as reduced
fertility, reduced hatchability, reduced
viability of offspring, impaired hormone
secretion or activity, and modified adult
sexual behavior. Although causal agents
and effects are known in some cases, the
underlying mechanisms associated with
contaminant-induced reproductive modifi-
cations are still poorly understood and
require extensive research (1,3-5). All of
the abnormalities described above can be
caused by disruption of normal endocrine
function either prior to or after the
hormone interacts with specific cellular
receptors (5). For example, a number of
effects on the reproductive system are asso-
ciated with decreased circulating levels of
sex hormones, as recently reported for
juvenile alligators hatched from eggs
obtained from a contaminated lake (6).
We have documented specific problems

associated with eggs and the reproductive
system of alligators (Alligator mississippiensis)
obtained from Lake Apopka, Florida, adja-
cent to a U.S. Environmental Protection
Agency (U.S. EPA) -designated Superfund
contaminant site, the former Tower
Chemical Company (6-9). Lake Apopka is
the fourth largest body of freshwater

(12,500 hectare) in Florida and is highly
polluted (10,11). Contaminants and nutri-
ents in the lake derive from extensive agri-
cultural activities around the lake that con-
tinue today, a sewage treatment facility asso-
ciated with the city of Winter Garden,
Florida, and a major pesticide spill. The
Tower Chemical Company was the site of
an extensive spill in 1980 of dicofol (12),
DDT (and its metabolites DDD, DDE,
and chloro-DDT), and sulfuric acid (U.S.
EPA, unpublished report). We have previ-
ously reported that alligator dutch viability
on this lake is significantly depressed com-
pared to viability on other comparable lakes
in central and southern Florida (6,8,9). A
significant dedine in the population size of
juvenile alligators occurred on Lake Apopka
following the Tower Chemical Company
spill (7,9). The population dedined by 90%
over the years 1980 to 1984 and remains at
a depressed level today.

Recently, we reported that juvenile alli-
gators from Lake Apopka exhibited abnor-
mal gonadal morphology and plasma sex
steroid concentrations (6). Ovaries from
alligators 6 months of age, hatched from
eggs collected on Lake Apopka, had promi-
nent polyovular follides, and many of the
oocytes were multinucleated. Male alliga-
tors from Lake Apopka of the same age had
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poorly organized testes with unique, aber-
rant structures of unknown origin within
the seminiferous tubules. Both male and
female juvenile alligators exhibited abnor-
mal plasma sex steroid concentrations, with
males from Lake Apopka having greatly
reduced plasma testosterone (T) concentra-
tions similar to that of females from either
the contaminated (Lake Apopka) or con-
trol (Lake Woodruff) lakes. In contrast,
males from the control lake, Lake
Woodruff, had plasma T concentrations 4
times that observed in the juvenile males
from Lake Apopka. The females from Lake
Apopka had elevated plasma estradiol-170
concentrations compared to the females
from the control lake. The data on plasma
sex steroid concentrations suggest several
hypotheses: a) steroidogenesis is abnormal
in the juveniles from Lake Apopka due to
developmental abnormalities of the gonad;
b) gonadal steroidogenesis is normal, but
degradation of the sex steroids is modified,
thus resulting in abnormal plasma concen-
trations; c) the ratio of free to bound
hormone has been modified due to varying
concentrations of the plasma proteins
bound to steroid hormones; or d) abnor-
mal stimulation from the pituitary and
hypothalamus (abnormal gonadotropin
release) could result in abnormal stimula-
tion of the gonad and thus, abnormal
plasma sex steroid concentrations. These
hypotheses are not mutually exclusive, and
the observations reported may be due, to
various degrees, to all of these factors. We
have performed an initial test of the first
hypothesis by incubating the gonads in
vitro to determine endogenous and
gonadotropin-stimulated rates of steroid
synthesis. These data can be used to clarify
the role of the gonad in producing the
reported abnormal plasma hormone
concentrations.

Materials and Methods
Animl
Eggs were collected under permit from the
Florida Game and Freshwater Fish
Commission from alligator nests on Lakes
Apopka and Woodruff. Eggs were
returned to the University of Florida
where they were incubated at 30.7
(±0.40C) in wet sphagnum moss. After
hatching, neonatal alligators were
maintained in an insulated building until
they were actively feeding. All hatchlings
were web-tagged so that clutch number
and lake of origin were known for each
individual. Within 10 days of hatching, 25

robust neonates from each lake (n= 50
total) were transferred to the Sante Fe
Teaching Zoo, Gainesville, Florida, where
they were housed in an outdoor enclosure
(30 x 10 m). This enclosure was wire-mesh
covered to prevent predation, but animals
experienced natural fluctuations in pho-
toperiod and temperature. Animals were
fed ad libitum daily with commercial alli-
gator chow (Burris Mill and Feed Inc.,
Franklinton, LA). Additional information
on care and housing of these animals can
be obtained in Guillette et al. (6). It
should be noted that the commercial feed
and water were not tested for additional
contaminants that might be present, even
at low concentrations.

Culture
At 6 months of age, all of the animals used
in this study were bled to obtain a plasma
sample that was analyzed for the concen-
tration of testosterone and estradiol-170.
The plasma data have been published pre-
viously (6). The animals were then killed
with an overdose of Nembutal. Gonads
were surgically removed; the right gonad
was fixed in alcoholic Bouin's, whereas the
left gonad was placed in short-term tissue
culture. Culture vessels were 10 ml Petri
dishes filled with 0.5 mg of gonadal tissue
slices and 5 ml of 32°C, oxygenated (95%
02: 5% C02) complete Dulbecco's
Minimum Essential Medium (DMEM;
Gibco). Culture vessels were placed on a
rocker in an incubator (32°C) for 12 hr.
At the end of this initial incubation peri-
od, the culture medium was removed from
all plates and flash frozen in liquid nitro-
gen. Fresh media (5 ml oxygenated
DMEM) was introduced to all plates. The
gonads were then treated with 5 IU of
porcine luteinizing hormone (pLH) per
culture; final dose 1.0 IU pLH/ml culture
media. Tissue was incubated at 320C for a
further 12 hr, after which the culture
medium was flash frozen for radioim-
munoassay (RIA) of estradiol-17, and
testosterone concentrations.

Radioimmunoaways
Plasma samples from gonadal cultures
were analyzed for estradiol and testos-
terone using RIA procedures that were
validated for use with culture media. For
estradiol determinations, duplicate samples
(50 jil) were assayed. Standard curves were
prepared in fresh media with known
amounts of radioinert estradiol (1, 5, 10,
25, 50, 100, 250, 500, and 1000 pg/ml).
The minimum concentration per tube

distinguishable from zero was 2.7 pg/mi.
Cross-reactivities of the estradiol anti-
serum (supplied courtesy of RL Butcher,
West Virginia University; characterized by
TS Gross) were: 11.2% for estrone, 1.7%
for estriol, < 1.0% for estradiol-17ct, and
0.1% for all other steroids examined. A
pooled sample (approximately 105 pg/ml)
was assayed serially in 5-, 10-, 20-, 30-,
40-, and 50-pl volumes (final voume of 50
pl with fresh incubation media). This inhi-
bition curve was parallel to the standard
curve, and a test for homogeneity of
regression indicated that the curves were
not different. Further characterization of
the assay involved measurement of known
amounts (1, 2, 5, 10, 25, 50, 100, 250,
and 500 pg) of estradiol in 50 pl of culture
media [y= 0.92 + 0.94x; y= amount of
estradiol measured (pg); x= amount of
estradiol added (pg); r2 = 0.9134].
Interassay and intraassay coefficients of
variation were 8.7 and 7.8%, respectively.

For testosterone determinations, dupli-
cate samples (50 pll) were assayed directly.
The minimum detectable concentration
per tube was 4.1 pg/ml. Cross-reactivities
of the testosterone antiserum (purchased
from ICN Biomedicals, Inc., Wilmington,
DE) with other steroids were: 18.75% for
5a-dihydrotestosterone; 3.0% for 5a-
androstenediol; < 1.0% for androstene-
dione; and 0.1% for all other steroids
examined. A pooled sample (approximately
211 pg/ml) was assayed serially in 5-, 10-,
20-, 30-, 40-, and 50-pl volumes (final vol-
ume of 50 fil with fresh incubation media).
The inhibition curve was parallel to the
standard curve, and the test for homogene-
ity of regression indicated that the curves
were not different. Further characterization
of the assay involved the measurement of
known amounts (1, 2, 5, 10, 25, 50, 100,
and 250 pg) of testosterone in 50 pl of cul-
ture media [y= 3.12 + 0.92x; y=amount of
testosterone measured (pg): x= amount of
testosterone added (pg); r2 = 0.8791] .
Interassay and intraassay coefficients of
variation were 7.6 and 9.1%, respectively.

Staitcs
We tested for differences in hormone con-
centrations between sexes, lakes, and LH
treatment by one- and two-way ANOVA
(StatView II, Abacus Concepts, Inc.,
Berkeley, CA). Where significant (p< 0.05)
variation existed, Scheffe's F tests were per-
formed. Ratio data (estrogen/testosterone
ratios) were log and arcsin transformed
prior to significance testing to achieve
homogeneity ofvariance (13).
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Results
Estrdiol-1713 Synthesis in Culture

We observed a difference in estradiol-170
(E2) synthesis in vitro when the interaction
between lake and sex were examined
(F = 12.98; df= 1.26; p = 0.0013: Figure
1A). Ovaries from females hatched from
eggs collected on Lake Woodruff (for brevi-
ty hereafter designated as Woodruff gonads)
synthesized significantly greater quantities of
E2 endogenously when compared to ovaries
from Apopka (F=6.473; df= 1.15;
p= 0.0225: Figure 1A). LH stimulation had
little effect on in vitro synthesis of E2 from
Woodruff ovaries but did on Apopka
ovaries. Concentrations of E2 in culture
media having Apopka ovaries after LH stim-
ulation were comparable to those observed
in cultures containing either treated or

untreated ovaries from Lake Woodruff
(Figure 1A).

Unstimulated testes obtained from
Lake Apopka males synthesized signifi-
cantly more E2 than testes from Lake

Woodruff males (F = 6.164; df= 1. 1 1;
p= 0.0304). In fact, there was no differ-
ence in the synthesis of E2 when ovaries
and testes from Lake Apopka individuals
were compared (F = 2.9 5 9, df= 1. 13;
p = 0.109 1). However, Lake Apopka testes
exhibited great variation in E2 synthesis.
Interestingly, the two individuals with
testes exhibiting femalelike synthesis of E2
were initially designated as females based
on the lack of an enlarged phallus typical
of males. LH did not stimulate a significant
rise in E2 synthesis from either Lake Apopka
or Lake Woodruff testes (Figure 1A).

Testostrone Synthesis in Culture
Testes obtained from animals from Lakes
Apopka and Woodruff
significant difference in theii
thesize testosterone (T) whe
in vitro (F = 0.389; df= 1.1
Figure 1B). No significant
synthesis was observed follov
lation. Following culture wil
containing testes still had sig
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Figure 1. Concentrations (mean ± 1 SE) of estradiol (A) and testosterone (B) released by gonad
12-hr incubation with or without LH stimulation. The N for all groups is given at the base of
discussion for indications of significance.

T than those cultures containing ovaries
(F= 10.371; df= 1.26; p=0.0034). All
cultures exhibited T concentrations at the
end of the second 12-hr incubation period
that were similar to those seen after the first
12 hr of incubation (Figure 1 B), suggesting
that the tissue was viable and that the lack
of a response to LH stimulation was not
due to tissue degradation.

Ovaries obtained from females from
both lakes showed significantly less T
synthesis than that observed from cultures
containing testes (F = 24.968; df= 1.26;
p < 0.0001: Figure 1B). Ovaries did not
exhibit increased synthesis of T when
exposed to LH.

exhibited no Fl Rato
r ability to syn- We observed that cultures of testes obtained
n unstimulated from Lake Woodruff males exhibited very
lI; p= 0.5454: low E/T ratios (Figure 2), whereas testes
increase in T from Lake Apopka had significantly elevated

ving LH stimu- E/T ratios (F = 8.86; df= 1. 11; p = 0.0 13)
th LH, cultures due to elevated E2 synthesis. The ratio for
,nificantly more Lake Woodruff males was significantly

below that reported for females from either
lake (F = 41.49; df= 1.29; p < 0.0001), but
the E/T ratio for males from Lake Apopka
was not significantly different than the E/T
ratios generated from cultures having ovaries
taken from either lake. The only cultured
gonads showing a significant change in E/T
ratio in response to LH treatment were
those having ovaries obtained from Lake
Apopka females (F= 11.86; df= 1.29;

|.iiI!J.|4IiI p== 0.004; Figure 2).

..1 ~Discussion
!ljlj!..jitlt; Synthesis of estradiol-173 (E2) was

significantly different in vitro when ovaries
FLmale, from alligators hatched from the contami-

nated and control lakes were compared.
Additionally, testes from males obtained
from the contaminated lake, Lake Apopka,
synthesized significantly higher concentra-
tions of E2 when compared to testes
obtained from control males. In contrast,

WApopka testosterone (T) synthesis from all testes
I Woodruff examined in this study displayed an appar-

ently normal pattern (normality is defined
in this study as the pattern seen in the
animals from the control lake) and pro-
duced concentrations greater than those
observed from ovaries obtained from
females from either lake. Interestingly, the
pattern of gonadal steroidogenesis differs
(Table 1) from that previously reported for

Female,
LH stimulated plasma concentrations of these hormones

obtained from the same individuals as
Js in vitro following used in this experiment (6). Patterns for
the bars in A. See plasma concentrations were as follows:

males from Lake Apopka, the contaminated
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Figure 2. The hormonal milieu secreted by the gonads in vitro is represented as an E/T ratio which is calculated by
dividing the estradiol concentration by the testosterone concentration in individual culture vessels.

lake, had lower than normal plasma T and
normal low E2 concentrations, whereas
females had low T but elevated plasma E2
concentrations (Table 1).

The data presented above for gonadal
steroidogenesis in vitro suggest that the dif-
ferences in plasma steroid concentrations we
have previously reported between alligators
from contaminated and control lakes are

due in part to modifications of gonadal
steroidogenesis with additional changes in
degradation pathways and response to the
stimulation of gonadotropins from the
hypothalamo-hypophysial system. Although
we have no data on the activity of various
enzymes associated with gonadal steroidoge-
nesis nor data on degradation pathways in
alligators exposed to various contaminants,
it is clear that changes in these systems have
occurred and future studies should examine
these systems. Data, however, are available
from other species that allow hypotheses to

be developed to explain our observations.
The possible mechanisms by which

environmental contaminants alter gonadal
steroidogenesis include a reduction in syn-
thesis of gonadotropin releasing hormone

(GnRH) from the hypothalamus, a reduc-
tion in luteinizing hormone (LH) release
from the pituitary, a reduction in the
availability of the precursor cholesterol, a

modification of the enzymes required
for steroidogenesis (e.g., aromatase,
cytochrome P450SCC), and modifications of
the cellular receptor numbers and function
(14). A decrease in plasma testosterone

concentration, as well as a 95% reduction
in plasma LH concentration, was reported
in male rats following exposure in utero to

small concentrations (0.064 pg/kg/bw) of
dioxin (15). One mechanism by which
dioxin modifies plasma androgen concen-

trations in adult male rodents is to inhibit
testicular cholesterol mobilization while
leaving cellular concentrations of the
enzyme cytochrome P450scc unaltered;
this enzyme is responsible for the conver-

sion of cholesterol to pregnenolone, the
initial step in gonadal steroidogenesis
(14). The effect of dioxin is apparently
organ specific as adrenal steroidogenesis is
altered following dioxin exposure by
reduction of the enzyme cytochrome
P450SCC (16,17)-

Table 1. Comparison of plasma steroid concentrations versus in vitro gonadal steroidogenesis for juvenile alliga-
tors obtained from two central Florida lakes.

Lake Sex Hormone Plasmaa Culture

L. Apopka Male E2 Normalb Greater than normal
T Less than normal Normal

Female E2 Greater than normal Less than normal
T Normal Normal

L. Woodruff Male E2 Normal Normal
T Normal Normal

Female E2 Normal Normal
T Normal Normal

aData for plasma values are taken from Guillette et al. (6). bNormal is defined as the plasma or culture hormone con-
centrations exhibited by the Lake Woodruff control animals. Indications of abnormality (greater than normal, less than
normal) are based on statistical difference between Lake Woodruff and Lake Apopka values at the p< 0.05 level.

A decrease in gonadotropin release and
steroidogenesis are not responses only to
dioxin exposure, as male rodents exposed
to diethylstilbestrol (DES) or o',p'-DDT
exhibit significantly reduced plasma LH
concentrations in response to a GnRH
challenge (18). Nor are abnormal
gonadotropin synthesis and steroidogenesis
specific to males exposed to various conta-
minants or synthetic estrogens. Exposure
of female mice to DES, a synthetic estro-
gen that was once used in humans as a
therapeutic agent, or various other contam-
inants (e.g., DDE, PCBs) can modify
steroidogenesis (4). Additionally, exposure
to an estrogenic compound during devel-
opment has more subtle effects at the cellu-
lar level. The cellular effects of DES expo-
sure in female mice include changes in the
number of receptors for estrogens (ER),
progestins (PR), and epidermal growth fac-
tor (EGFR) in the vagina and in the ER
and PR in the uterus and mammary gland
(studies summarized in 3). Similar
modifications in receptor number are seen
in the prostate and seminal vesicle of male
mice (4). Additionally, there are numerous
changes in the protein secretion patterns of
the reproductive tract of the mouse follow-
ing neonatal exposure to DES that are
indicative of changes in gene expression
(4,19,20). These studies in adult and
neonatal rodents provide clues to possible
loci affected by in utero exposure, but
mechanisms by which steroidogenesis is
altered following embryonic or neonatal
exposure to endocrine-disrupting xenobiot-
ic chemicals are still under study. No data
are available concerning the activities of
various enzymes associated with steroido-
genesis in alligators, nor are there data on
circulating gonadotropin concentrations.
Further studies must examine the bio-
chemistry of gonadal steroidogenesis in
alligators as well as other wildlife models,
as our data suggest that a modification of
gonadal estrogen synthesis has occurred.

Interestingly, we reported that male
juvenile alligators from Lake Apopka with
suspected organochlorine contamination
(e.g., DDE) had low plasma T concentra-
tions similar to those of females from either
the contaminated or control lakes (6).
Previous studies had shown that alligator
eggs obtained from Lake Apopka had as
their major contaminant p,p'-DDE, with
concentrations up to 5.8 ppm wet weight
(21). We hypothesized that the testes from
animals obtained from the contaminated
lake were feminized due to the endocrine-
disrupting activity of DDE, and thus they
synthesized estrogens instead of androgens.
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The data obtained from culturing these
testes support the first prediction; that is,
the testes from Lake Apopka juvenile male
alligators make significantly more E2 than
testes obtained from the control males.
However, we also observed that the testes
from Lake Apopka males released T into the
culture media at a level similar to the con-
trol testes. Thus, the differences in plasma T
concentrations previously reported in these
animals (6) are apparently due to a factor
other than modified gonadal steroidogene-
sis. Variation in plasma T concentrations
can be due to a modification in the degrada-
tion rate of this steroid either by biochemi-
cal changes in the liver or variation in the
plasma proteins that bind steroids.

Typically, steroid hormones are found
in either a bound or free form in the
plasma (22). The ratio of free to bound
hormone is highly variable, and is depen-
dent on sex, species, and many other physi-
ological attributes. The plasma proteins
most effective in binding steroids include
plasma albumins and sex steroid binding
globulin (SBG) (23). The source of the
SBG is not fully established, but a human
hepatoblastoma cell line synthesizes a
protein indistinguishable from SBG,
suggesting that the liver may be the source
of the sex steroid binding protein (24). It
is known that elevated plasma E2 concen-
trations stimulate a rise in plasma SBG
concentration in humans whereas elevated
plasma T stimulates a decline (22). In
reptiles, steroid binding proteins have been
identified in the plasma. An SBG-like
protein has been reported in several snakes
(25), a freshwater turtle (26,27), and in a
lizard (28,29). The SBP-like protein

identified in a turtle and a lizard had high
affinity for T as well as E2. The source of
the SBGs in reptiles is unknown as is the
stimulus for their production.

The binding of sex steroid hormones to
plasma proteins affects not only the
amount of hormone available to the target
cells but also influences the degradation
rate of these hormones. The hepatocytes of
the liver are the major site of steroid
metabolism. The amount of hormone
available to these cells is dependent upon
the capillary transit time, the dissociation
time of the hormone from the protein
carrier, the amount of hormone bound to
various plasma proteins, and the mem-
brane permeability of the hepatocytes.
Hormones bound to SBG are thought to
be protected from hepatic metabolism.

Modifications in the ratio of SBG to
plasma albumins can have dramatic effects
on the circulating concentrations of various
steroid hormones and their function at the
cellular level. It has been suggested that
high levels of SBG produce a feminizing
influence as large amounts of T are
removed from the free pool in the plasma,
whereas masculinization occurs when SBG
concentrations drop (30). Our data
suggest that the abnormally low concentra-
tions of free T found in the blood of male
juvenile alligators from Lake Apopka is not
due to depressed synthesis of this hormone
from the gonad but is due instead to either
elevated levels of degradation (presumably
in the liver) or binding to plasma proteins,
so that plasma concentrations are compara-
ble to those seen in normal females.

Elevated metabolism of plasma T may
be due to modifications of the liver or

changes in the concentrations of plasma
carrier proteins. If SBG levels are reduced
due to exposure to contaminants, then we
could hypothesize that the majority of the
testosterone would be bound to plasma
albumins and readily metabolized. In
contrast, estrogens have been shown to
raise SBG concentrations in the plasma,
and many contaminants have been shown
to be estrogenic (1,31). Elevated concen-
trations of SBG, induced by estrogenic or
anti-androgenic contaminants, could sig-
nificantly decrease the free T in the plasma
pool. Future research needs to investigate
the role of hormone-mimicking contami-
nants in modifying the composition and
concentrations of various steroid binding
plasma proteins. There is ample evidence
that exposure to various hormones or cont-
aminants modifies hepatic enzymes and
hepatic function during embryonic or
neonatal development (32,33). As the liver
is suggested as the source of the steroid
binding plasma proteins, it is not unlikely
that changes in hepatic functioning would
modify steroid metabolism in contami-
nant-exposed wildlife as reported for labo-
ratory rodents (34).
We hypothesize that xenobiotic com-

pounds are modifying reproductive and
endocrine development and function in
alligators exposed in ovo. We suggest that
the changes in the reproductive and
endocrine systems we have reported here
and previously are the result of
modifications in gonadal steroidogenic
activity, hepatic degradation of steroids,
and synthesis of plasma sex steroid binding
proteins. These predictions need further
study at the cellular and biochemical level.
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